ΜΑΥ111 - Απειροστικός Λογισμός I
Περιγραφή
Πραγματικοί αριθμοί, αξιωματική θεμελίωση του συνόλου των πραγματικών αριθμών (με έμφαση στο supremum και το infimum), φυσικοί αριθμοί, επαγωγή, κλασσικές ανισότητες. Συναρτήσεις, γραφικές παραστάσεις συναρτήσεων, μονότονες συναρτήσεις, φραγμένες συναρτήσεις, περιοδικές συναρτήσεις. Αμφιμονοσήμαντες και επί συναρτήσεις, αντίστροφη συνάρτησης. Επισκόπηση τριγωνομετρίας, τριγωνομετρικές και αντίστροφες τριγωνομετρικές συναρτήσεις. Εκθετική και λογαριθμική συνάρτηση. Υπερβολικές και αντίστροφες υπερβολικές συναρτήσεις.
Ακολουθίες πραγματικών αριθμών, συγκλίνουσες ακολουθίες, μονότονες ακολουθίες, αναδρομικά οριζόμενες ακολουθίες, όρια μονοτόνων ακολουθιών, κιβωτισμός διαστημάτων. Η έννοια της υπακολουθίας, θεώρημα Bolzano Weierstass, ακολουθίες Cauchy. Σημεία συσσώρευσης ακολουθίας, ανώτερο και κατώτερο όριο ακολουθίας.
Συνέχεια συνάρτησης, σημεία συσσώρευσης και μεμονωμένα σημεία συνόλων. Όρια συναρτήσεων σε πραγματικό αριθμό, πλευρικά όρια, όρια στο +∞ και στο -∞. Συνέχεια βασικών συναρτήσεων, συνέχεια και τοπική συμπεριφορά. Θεώρημα Bolzano και θεώρημα ενδιαμέσων τιμών. Χαρακτηρισμός της συνέχειας με ακολουθίες. Ιδιότητες συνεχών συναρτήσεων σε κλειστό διάστημα, συνέχεια της αντίστροφης συνεχούς συνάρτησης.
Παράγωγος συναρτήσεως, ορισμός και γεωμετρική ερμηνεία, παραδείγματα και εφαρμογές στις φυσικές επιστήμες. Παράγωγοι βασικών συναρτήσεων, κανόνες παραγώγισης, παράγωγοι ανωτέρας τάξης. Θεώρημα Rolle, θεώρημα μέσης τιμής, θεώρημα Darboux. Σύνδεση της παραγώγου με τη μονοτονία συνάρτησης, ακρότατα συνάρτησης, κυρτές και κοίλες συναρτήσεις, σημεία καμπής. Θεώρημα παραγώγισης της αντίστροφης συνάρτησης. Γενικευμένο θεώρημα μέσης τιμής και κανόνας του De L' Hospital. Μελέτη συνάρτησης με χρήση παραγώγων.
Διδάσκων
ΜΑΥ112 - Θεμελιώδεις Έννοιες Μαθηματικών
Περιγραφή
Λογικές προτάσεις. Προτασιακός Λογισμός. Ταυτολογίες. Bασική θεωρία συνόλων. Ένωση, τομή, διαφορά, συμμετρική διαφορά και ιδιότητες των πράξεων αυτών. Δυναμοσύνολο και συμπλήρωμα συνόλου. Καρτεσιανό γινόμενο συνόλων. Η έννοια της συλλογής συνόλων. Σχέσεις. Σύνθεση σχέσεων. Ιδιότητες των σχέσεων. Ισοδυναμίες. Κλάσεις ισοδυναμίας. Σχέσεις διάταξης. Φράγματα και φραγμένα σύνολα. Σύνολα καλά διατεταγμένα. Αρχή της υπερπεπερασμένης επαγωγής. Συναρτήσεις. Βασικές έννοιες. Αμφιμονοσήμαντη συνάρτηση. Αντίστροφη συνάρτηση. Εικόνα και αντίστροφη εικόνα ενός συνόλου μέσω μιας συνάρτησης. Συναρτήσεις και διατεταγμένα σύνολα. Οικογένειες. Το σύνολο των πραγματικών αριθμών. Αξιωματική θεμελίωση. Το σύνολο των φυσικών αριθμών. Το σύνολο των ακεραίων αριθμών. Ρίζες μη αρνητικών πραγματικών αριθμών. Το σώμα των ρητών αριθμών. Το σύνολο των αρρήτων αριθμών. Ισοδύναμα του αξιώματος της πληρότητας. b-δική παράσταση πραγματικού αριθμού. Ισοδύναμα σύνολα. Τα τμήματα των φυσικών αριθμών. Πεπερασμένα σύνολα. Απέραντα σύνολα. Το θεώρημα των Schröder-Bernstein. Αριθμήσιμα σύνολα. Το πολύ αριθμήσιμα σύνολα. Υπεραριθμήσιμα σύνολα. Το Θεώρημα του Cantor. Το αξίωμα της επιλογής. Ισοδύναμα του αξιώματος της επιλογής. Η αναγκαιότητα της αξιωματικής θεμελίωσης των συνόλων και μία πρώτη προσέγγιση σ’ αυτήν.
Διδάσκοντες
- Α. Τόλιας
- Ε. Νικολιδάκης
ΜΑΥ123 - Θεωρία Aριθμών
Περιγραφή
Διαιρετότητα, ισοδυναμίες mod m, Kινέζικο Θεώρημα υπολοίπων, Aριθμητικές συναρτήσεις και αντιστροφή του Mobius. Θεωρήματα Fermat, Euler και Wilson. Aρχικές ρίζες mod p. Θεωρία δεικτών και τετραγωνικά υπόλοιπα. Εφαρμογές στην κρυπτογραφία.
Διδάσκοντες
- Α. Θωμά
- Σ. Παπαδάκης
ΜΑΥ121 - Γραμμική Άλγεβρα I
Περιγραφή
Η Άλγεβρα των (m x n) πινάκων και εφαρμογές. Κλιμακωτοί και ισχυρά κλιμακωτοί πίνακες. Βαθμίδα πίνακα. Ορίζουσες. Αντίστοφος πίνακας. Γραμμικά συστήματα και εφαρμογές. Διανυσματικοί χώροι. Γραμμικές απεικονίσεις. Ο χώρος L(E,F) των γραμμικών απεικονίσεων. Υποχώροι. Βάσεις. Διάσταση. Βαθμίδα γραμμικής απεικόνισης. Θεμελιακή εξίσωση διάστασης και οι εφαρμογές της. Πίνακας γραμμικής απεικόνισης. Πίνακας αλλαγής βάσης. Ο ισομορφισμός L(E,F)?Mmxn(K). Ισοδύναμοι πίνακες. Όμοιοι πίνακες. Ορίζουσα ενός ενδομορφισμού. Άθροισμα και ευθύ άθροισμα υποχώρων.
Διδάσκοντες
ΜΑΥ211 - Aπειροστικός Λογισμός II
Περιγραφή
Σειρές, σύγκλιση σειρών και κριτήρια σύγκλισης. Κριτήριo Dirichlet, κριτήριο λόγου, κριτήριο ρίζας, κριτήριο ολοκληρώματος. Εναλλάσουσες σειρές και θεώρημα Leibnitz. Απόλυτη σύγκλιση σειράς, αναδιατάξεις σειρών. Δυναμοσειρές, ακτίνα σύγκλισης δυναμοσειρών.
Ομοιόμορφη συνέχεια συναρτήσεων, ορισμός και ιδιότητες. Χαρακτηρισμός ομοιόμορφης συνέχειας με ακολουθίες. Ομοιόμορφη συνέχεια συνεχών συναρτήσεων ορισμένων σε κλειστό διάστημα.
Ολοκλήρωμα Riemann, ορισμός για φραγμένες συναρτήσεις σε κλειστό διάστημα. Κριτήριο Riemann, ολοκληρωσιμότητα των συνεχών συναρτήσεων. Αόριστο ολοκλήρωμα και θεμελιώδες θεώρημα του Απειροστικού Λογισμού. Θεώρημα μέσης τιμής του ολοκληρωτικού λογισμού. Παραγοντική ολοκλήρωση και ολοκλήρωση με αντικατάσταση. Ολοκληρώματα βασικών συναρτήσεων, ολοκλήρωση ρητών συναρτήσεων. Εφαρμογές του ολοκληρώματος. Γενικευμένα ολοκληρώματα και κριτήρια σύγκλισης αυτών. Σχέση γενικευμένων ολοκληρωμάτων και σειρών.
Πολυώνυμα Taylor, θεώρημα Taylor, μορφές του υπολοίπου Taylor. Σειρές Taylor και αναπτύγματα σε σειρά Taylor βασικών συναρτήσεων.
Διδάσκοντες
- Ε. Νικολιδάκης
Ανακοινώσεις
- 03Φεβ Εκδήλωση Ενδιαφέροντος για το μάθημα Παράλληλα και Κατανεμημένα Συστήματα (ΜΑΕ840) 03-02-2026
- 02Φεβ Ανακοίνωση Διεύθυνσης Εκπαίδευσης για Ανώτατη Διάρκεια Φοίτησης 02-02-2026
- 30Ιαν Πίνακες Προσωρινής Κατάταξης των υποψηφίων / αιτούντων και Οριστικής Κατάταξης υποψηφίου για το έργο «Απόκτηση Ακαδημαϊκής Διδακτικής Εμπειρίας σε Νέους Επιστήμονες Κατόχους Διδακτορικού στο Πανεπιστήμιο Ιωαννίνων» για το 2025-2026 (εαρινό εξάμηνο). 30-01-2026
- 28Ιαν Εκδήλωση ενδιαφέροντος για το Αντικειμενοστρεφής Προγραμματισμός (ΜΑΕ647) 28-01-2026
- 26Ιαν Ψήφισμα Γ.Σ. για τη Διδακτική Επάρκεια των Αποφοίτων 26-01-2026
- 23Ιαν Erasmus+: Προκηρύξεις για Πρακτική Άσκηση και Σπουδές 23-01-2026
- 23Ιαν "Υπολογιστική Στατιστική (ΜΑΕ836)" - Εκδήλωση Ενδιαφέροντος 23-01-2026
- 23Ιαν "Στατιστική Ανάλυση Δεδομένων (ΜΑΕ832)" - Εκδήλωση Ενδιαφέροντος 23-01-2026
- 09Ιαν Πρόσκληση Εκδήλωσης Ενδιαφέροντος για «Απόκτηση Ακαδημαϊκής Διδακτικής Εμπειρίας στο Πανεπιστήμιο Ιωαννίνων στο Ακαδημαϊκό Έτος 2025-2026» (Εαρινο Εξαμηνο) 09-01-2026
- 09Ιαν Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήματος Μαθηματικών Πανεπιστημίου Θεσσαλίας 09-01-2026
Σεμινάρια - Διαλέξεις - Ημερίδες
18 Φεβρουαρίου 2026, 15:00, Aίθουσα 201α
Εβδομαδιαίο Σεμινάριο
Filippo Santambrogio: Gradient Flows in Euclidean Space, Metric Spaces, and Wasserstein Spaces ![]()
17 Φεβρουαρίου 2026, 15:00, Aίθουσα 201α
Εβδομαδιαίο Σεμινάριο
Gino Biondini: Whitham Modulation Theory in Two Spatial Dimensions and Applications ![]()
05 Φεβρουαρίου 2026, 13:00, Aίθουσα 201α
Εβδομαδιαίο Σεμινάριο
Γεώργιος Μακράκης: Wave Packet Asymptotic Solutions of the Phase‐Space Schrödinger Equation ![]()

