• Home
  • The Department
    • Department’s View – Graduate Students
    • Administration
    • Sections
      • Mathematical Analysis
      • Algebra and Geometry
      • Probability, Statistics and Operations Research
      • Applied and Computational Mathematics
    • Secretariat
    • Laboratories
    • Library, Study Room
  • Academic Studies
    • Undergraduate Studies
      • Courses
      • Student Advisors
    • Graduate Studies
      • Graduate Courses and Professors
      • Call for Applications
      • Graduate Programme Overview
    • PhD Program
    • Post-Doctoral Research
    • Internships
    • Erasmus
      • Erasmus+ Program
      • Available Undergraduate Courses
      • Available Graduate Courses
  • People
    • Faculty
  • Quality Assurance Policy
  • Contact

×

Search
uoi bird
Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina
  • Ελληνικά
  • English
Thursday, 14 August 2025
  • Home /
  • BatsidisAlias /
  • English /
  • PostgraduateCourseEN

ΓΕ8 - Special Topics in Geometry

Syllabus

  • Bochner’s technique in Differential Geometry.
  • Complex manifolds, Kähler manifolds, Riemann surfaces.
  • Isometric and conformal immersions.
  • Rigidity aspects of isometric immersions.
  • Minimal submanifolds in Riemannian manifolds.
  • Harmonic maps, geometric PDE’s and flows.

Course Outline

ΓΕ1 - Differential Geometry

Syllabus

  • Manifolds of the Euclidean space.
  • Tangent and normal bundles.
  • 1st and 2nd fundamental forms.
  • Weingarten operator and Gauss map.
  • Convex hypersurfaces.
  • Hadamard’s Theorem.
  • 1st and 2nd variation of area.
  • Minimal submanifolds.
  • Weierstrass representation.
  • Bernstein’s Τheorem.

Course Outline

ΓΕ3 - Riemannian Geometry

Syllabus

  • Riemannian metrics, isometries, conformal maps.
  • Geodesics and exponential maps.
  • Parallel transport and holonomy.
  • Hopf-Rinow’s Theorem.
  • Curvature operator, Ricci curvature, scalar curvature.
  • Riemannian submanifolds.
  • Gauss-Codazzi-Ricci equations.
  • 1st and 2nd variation of length.
  • Jacobi fields.
  • Comparison theorems.
  • Homeomorphic sphere theorem

Course Outline

ΓΕ2 - Differential Geometry

Syllabus

  • Topological and smooth manifolds.
  • Tangent and cotangent bundles.
  • Vector fields and their flows.
  • Submanifolds and Frobenius’ Theorem.
  • Vector bundles.
  • Connection and parallel transport.
  • Differential forms.
  • De Rham cohomology.
  • Integration.
  • Stokes’ Theorem.

Course Outline

ΓΕ4 - Differential Topology

Syllabus

  • Homology and cohomology.
  • Betti numbers.
  • Attaching and gluing manifolds.
  • Morse functions.
  • Sard’s Theorem.
  • Passing through a critical value.
  • Regular interval theorem.
  • CW decomposition of manifolds.
  • Morse inequalities.
  • Total curvature and Gauss maps.

Course Outline

  1. ΓΕ5 - Algebraic Topology I
  2. ΓΕ7 - Algebraic Geometry
  3. ΓΕ6 - Algebraic Topology II
  4. ΓΕ8 - Specialized Topics in Geometry

Σεμινάρια - Διαλέξεις - Ημερίδες

15 Ιουλίου 2025, 09:00, Aίθουσα 201α

Παρουσίαση Μεταπτυχιακής Διατριβής

Αικατερίνη-Μαρία Ντάσιου: Μία Sat διατύπωση για την εξέταση της εικασίας του Barnette open in new custom

15 Ιουλίου 2025, 12:00, Aίθουσα 201α

Εβδομαδιαίο Σεμινάριο

Aristidis Nikoloulopoulos: Dependence modelling with copulas: past, present and future open in new custom

Τμήμα Μαθηματικών
Σχολή Θετικών Επιστημών
Πανεπιστήμιο Ιωαννίνων

Για τεχνικά ζητήματα που αφορούν
τον ιστότοπο του Τμήματος Μαθηματικών,
παρακαλούμε επικοινωνήστε με την
Επιτροπή Διαδικτύου του Τμήματος
(kmavridi@uoi.gr ή ksimos@uoi.gr)  ..

Πανεπιστημιούπολη, TK 45110, Ιωάννινα
(+30) 26510-07492 (Εναλλακτικά: -07493)
grammath@uoi.gr

© 2025 Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina

Login Form

  • Forgot your username?
  • Forgot your password?
Go Top
  • Follow via Facebook