Analysis on pathological spaces: An introduction

lakovos Androulidakis

National and Kapodistrian University of Athens

Ioannina, May 2018

Examples

M: compact manifold.

1 Orbits of (some) Lie group actions on M. Vector fields: image of infinitesimal action $\mathfrak{g} \to \mathfrak{X}(M)$.

Focus on $\mathcal{F} = \langle X \rangle$:

- 2~X nowhere vanishing vector field of $M \rightsquigarrow$ action of $\mathbb R$ on M.
- 3 Irrational rotation on torus T²: "Kronecker" flow of $X = \frac{d}{dx} + \theta \frac{d}{dy}$. \mathbb{R} injected as a dense orbit (leaf).
- 4 "Horocyclic" foliation:
 - Let Γ cocompact subgroup of $SL(2, \mathbb{R})$. Put $M = SL(2, \mathbb{R})/\Gamma$.
 - \mathbb{R} is embedded in SL(2, \mathbb{R}) by $\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$, $t \in \mathbb{R}$.
 - ▶ Therefore \mathbb{R} acts on M. Action is ergodic, \exists dense orbits (leaves).

Laplacians of Kronecker foliation

Kronecker foliation on $M = T^2$: $\mathcal{F} = \langle \frac{d}{dx} + \theta \frac{d}{dy} \rangle$. $L = \mathbb{R}$ Two Laplacians:

• $\Delta_{L} = -\frac{d^{2}}{dx^{2}}$ acting on $L^{2}(\mathbb{R})$ • $\Delta_{M} = -X^{2}$ acting on $L^{2}(M)$

By Fourier:

- $\Delta_L \rightsquigarrow$ mult. by ξ^2 on $L^2(\mathbb{R})$. Spectrum: $[0, +\infty)$.
- $\Delta_M \rightsquigarrow \text{mult. by } (n + \theta k)^2 \text{ on } L^2(\mathbb{Z}^2).$ Spectrum dense in $[0, +\infty)$.

Qn 1: Do Δ_L and Δ_M have the same spectrum for every (regular) foliation?

Qn 2: If so, how to calculate this spectrum?

Tools: Holonomy groupoid $H(\mathfrak{F})$, Longitudinal pseudodifferential calculus, Groupoid C*-algebra(s).

The C*-algebra of a Lie groupoid (Connes, Renault) For f, $g \in C_c^{\infty}(G)$:

- we put $f^*(x) = \overline{f(x^{-1})}$
- we want to form f * g by a formula

$$f * g(x) = \int_{yz=x} f(y)g(z)$$

In other words, we want to have an integration along the fibers of the composition $G \times_{s,t} G \to G$. Use either Haar systems or half densities.

Proposition

The above involution and product make $C_c^{\infty}(G)$ a *-algebra.

"Reduced" $C_r^*(G)$: completion with left regular representation "Full" $C^*(G)$: completion with all representations Quotient $C^*(G) \rightarrow C_r^*(G)$.

I. Androulidakis (Athens)

Analysis on pathological spaces

Basic tool: Pseudodifferential calculus (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C_c^{\infty}(G)$. The algebra generated is the algebra of differential operators.

Using Fourier transform one can write a differential operator P (acting by left multiplication on $f\in C^\infty_c(G))$ as:

$$(\mathsf{Pf})(x, y) = \int \exp(i\langle \varphi(x, z), \xi \rangle) \alpha(x, \xi) \chi(x, z) f(z, y) d\xi dz$$

Proposition (Connes)

- ▶ Negative order pseudodifferential operators $\in C^*(M, F)$
- Zero order pseudodifferential operators: multipliers of C*(M, F).

Together with multiplicativity of the principal symbol this gives an exact sequence of C^* -algebras:

$$0 \to C^*(M, F) \to \Psi^0(M, F) \to C(SF^*) \to 0$$

Laplacians revisited

Theorem (Connes, Kordyukov, Vassout)

Elliptic operators of positive order are regular unbounded multipliers (in the sense of Baaj-Woronowicz: $graph(D) \oplus graph(D)^{\perp}$ is dense).

More generally M compact, (M, F) regular foliation.

- Lie algebra $\mathfrak{F} = C^{\infty}(M, F)$ acts on $C^{\infty}(G)$ by unbounded multipliers.
- Laplacian $\Delta = \sum X_i^2$ is an unbounded (regular) multiplier of $C^*(M, \mathcal{F})$.

 $L^2(L), L^2(M)$ are representations of $C^*(M, \mathfrak{F}).$

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

We recover Laplacians Δ_L , Δ_M .

Statement of 2+1 theorems

Theorem 1 (Connes, Kordyukov)

 Δ_M and Δ_L are essentially self-adjoint.

Also true (and more interesting)

- for $\Delta_M + f$, $\Delta_L + f$ where f is a smooth function on M. (Schroedinger operators, etc.)
- more generally for every leafwise elliptic (pseudo-)differential operator.

Not trivial because:

- Δ_M not elliptic (as an operator on M).
- L not compact.

```
If L is dense + amenability, \Delta_M and \Delta_L have the same spectrum.
```

Connes...

In many cases, one can predict the possible gaps in the spectrum.

I. Androulidakis (Athens)

Analysis on pathological spaces

Proof of theorems 1 and 2

Theorem 1

 Δ_M and Δ_L are essentially self-adjoint.

- $\blacktriangleright\ L^2(M)$ and $L^2(L):$ representations of the foliation $C^*\mbox{-algebras}.$
- Recall (Baaj, Woronowicz): Every representation extends to regular multipliers.

image of the adjoint = adjoint of the image

Theorem 2 (Kordyukov)

If all leaves L are dense + amenability assumptions, Δ_M and Δ_L have the same spectrum.

- (Fack and Skandalis): If the foliation is minimal (*i.e.* all leaves are dense) then the foliation C*-algebra is simple. Whence all representations are faithful.
- Every injective morphism of C*-algebras is isometric and isospectral.

Elliptic operators - Gaps of their spectrum

Theorem 3 (Connes)

In many cases, one can predict the possible gaps in the spectrum.

More precisely:

- Gaps in the spectrum \longrightarrow projections in $C^*(M, F)$.
- Projectionless $C^*(M, F)$: spectrum connected.
- Sometimes dimension function on projections (related with K-theory).
 - Values in \mathbb{N} : few projections.
 - ▶ values in a dense subset of \mathbb{R}_+ : many projections.

Examples

Horocyclic foliation: no gaps in the spectrum

Let the "ax + b" group act on a compact manifold M. e.g. $M = SL(2, \mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal).

The spectrum of the Laplacian is an interval $[m, +\infty)$

Proof: We show $C^*(M, F)$ projectionless.

- ▶ ∃ measure on M invariant by ax + b (amenable). x + b invariance \implies trace on C^{*}(M, F) faithful since C^{*}(M, F) simple (Fack-Skandalis).
- \blacktriangleright The " ax " subgroup \longrightarrow action of \mathbb{R}^*_+ on $C^*(M,F)$ which scales the trace.
- Image of K_0 countable subgroup of \mathbb{R} , invariant under \mathbb{R}^*_+ action.

Similarly, Kronecker flow: Image of the trace $\mathbb{Z} + \theta \mathbb{Z}$

Conclusions

Theorems 1 and 2 generalize to any singular foliation!

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module ${\mathfrak F}$ of $C^\infty(M;TM),$ stable under brackets.

Examples

- **1** \mathbb{R} foliated by 3 leaves: $(-\infty, 0), \{0\}, (0, +\infty)$.
 - \mathcal{F} generated by $x^n \frac{\partial}{\partial x}$. Different foliation for every n.
- 2 R² foliated by 2 leaves: {0} and R²\{0}.
 No obvious best choice. 𝔅 given by the action of a Lie group

 $\operatorname{GL}(2,\mathbb{R})$, $\operatorname{SL}(2,\mathbb{R})$, \mathbb{C}^*

IA+Skandalis (2006-today): Holonomy groupoid, foliation C*-algebras, longitudinal pseudodifferential calculus...

Need to know the shape of $K_0(C^*(\mathfrak{F}))!$ (Baum-Connes conjecture...)

Careful look at action SO(3) $\subset \mathbb{R}^3$ (I) dim(Lie(SO(3))) = 3, so $\mathcal{F} = \operatorname{span}_{C^{\infty}(M)}\langle X, Y, Z \rangle$.

Take any (M, \mathfrak{F}) . At $x \in M$ put $\mathfrak{F}_x = \mathfrak{F}/I_x\mathfrak{F}$. Get exact sequence

$$0 \to \mathfrak{g}_x \to \mathfrak{F}_x \xrightarrow{ev_x} \mathsf{T}_x \mathsf{L}_x \to 0$$

•
$$L_x$$
 regular $\Rightarrow \mathfrak{F}_x = T_x L_x$

•
$$L_x$$
 singular \Rightarrow dim $(\mathcal{F}_x) >$ dim (L_x) .

• $dim(\mathcal{F}_{x})$ (upper) semicontinuous

For $(\mathbb{R}^3, \mathcal{F})$ we have:

- $\mathfrak{F}_0 = \mathfrak{g}_x = \text{Lie}(SO(3))$, so $\dim(\mathfrak{F}_0) = 3$
- For $x \neq 0$, $dim(\mathcal{F}_x) = 2$

$$\mathsf{H}(\mathfrak{F}) = (S^2 \times S^2 \times \mathbb{R}^+_*) \cup SO(3) \times \{0\}$$

Careful look at action SO(3) $\subset \mathbb{R}^3$ (II)

 $\mathsf{H}(\mathfrak{F}) = (S^2 \times S^2 \times \mathbb{R}^+_*) \cup SO(3) \times \{0\} \text{ decomposes } \mathbb{R}^3:$

•
$$\Omega_1 = \{ x \in \mathbb{R}^3 : \dim(\mathcal{F}_x) \leq 3 \} = \mathbb{R}^3$$

•
$$\Omega_0 = \{ x \in \mathbb{R}^3 : \dim(\mathcal{F}_x) \leqslant 2 \} = \mathbb{R}^3 \setminus \{ 0 \}$$

Generalize to arbitrary (M, \mathcal{F}) :

- $dim(\mathfrak{F}_x)$ upper semicontinuous $\Rightarrow \Omega_i = \{x \in M : dim(\mathfrak{F}_x) \leqslant i\}$ open
- Also, $Y_i = \Omega_i \setminus \Omega_{i-1}$ closed and saturated.

Definition

1 Decomposition sequence of (M, \mathcal{F}) :

$$\Omega_0 \subseteq \Omega_1 \subseteq \ldots \subseteq \Omega_{k-1} \subseteq \Omega_{\mathbf{k}} = M$$

2 We say that (M, \mathcal{F}) has height **k**. (**k** = $+\infty$ allowed and possible!)

Careful look at action SO(3) $\subset \mathbb{R}^3$ (III)

So foliation $(\mathbb{R}^3, \mathcal{F})$ has height $\mathbf{k} = 1$:

$$\Omega_0 = \mathbb{R}_3 \backslash \{0\}, \qquad \Omega_1 = \mathbb{R}^3, \qquad Y_0 = \Omega_0, \qquad Y_1 = \{0\}.$$

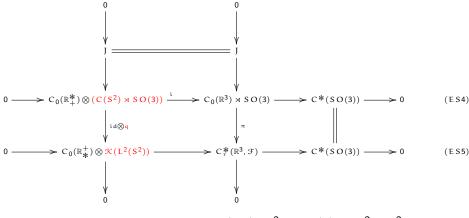
- SO(3) compact, whence amenable: $C^*(\mathfrak{F}) = C^*_r(\mathfrak{F})$.
- $C^*(M, \mathcal{F})|_{\Omega_0} = C_0(\mathbb{R}^+_*) \otimes \mathcal{K}(L^2(S^2))$
- $C^*(M, \mathcal{F})|_{Y_1} = C^*(SO(3))$

Exact sequence of C*-algebras:

$$0 \longrightarrow C_0(\mathbb{R}^+_*) \otimes \mathcal{K}(L^2(S^2)) \longrightarrow C^*(\mathsf{M}, \mathcal{F}) \xrightarrow{\pi_{\mathcal{F}}} C^*(SO(3)) \longrightarrow 0$$

 $SO(3) \subset \mathbb{R}^3$: calculation (I)

 $\pi: \mathbb{R}^3 \gg \mathrm{SO}(3) \longrightarrow \mathrm{H}(\mathcal{F})$



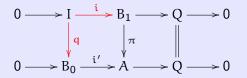
where q: integration along fibers of $(s, t) : S^2 \rtimes SO(3) \rightarrow S^2 \times S^2$.

I. Androulidakis (Athens)

Height 1 foliations

Proposition

Given a diagram of exact sequences of C*-algebras and morphisms:



the mapping cone $\mathcal{C}_{(q,i)}$ of the map $(q,i) : I \to B_0 \oplus B_1$ is canonically E^1 -equivalent to A (KK-equivalent).

Height k > 1 foliations

Proposition

The previous result extends to foliations (M, \mathcal{F}) of any height: The foliation C*-algebra is "K"-equivalent (E-equivalent) to a mapping telescope.

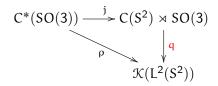
Examples of higher height arise looking at flag manifolds... For instance:

- Let P be the minimal parabolic subgroup of $GL(n, \mathbb{R})$ (P = uppertriangular matrices).
- Let $P \times P$ act on $GL(n, \mathbb{R})$ by left and right multiplication.
- Orbits labeled by symmetric group S_n (Bruhat decomposition)

$SO(3) \subset \mathbb{R}^3$: calculation (II)

 $\rho: C^*(SO(3)) \to \mathcal{K}(L^2(S^2))$ natural repn of SO(3) on $L^2(S^2).$

 $\mathfrak{j}: C^*(SO(3)) \to C(S^2) \rtimes SO(3) \text{ induced by unital inclusion } \mathbb{C} \to C(S^2).$



$SO(3) \subset \mathbb{R}^3$: calculation (III)

 $C_0(\mathbb{R}^3)=$ mapping cone of $\mathbb{C}\to C(S^2).$ Taking crossed products by the action of SO(3) and using the first diagram, we find:

+ $C_0(\mathbb{R}^3) \rtimes SO(3)$ in (ES5) is mapping cone \mathcal{C}_j , where

$$j:C^*(SO(3))\to C(S^2)\rtimes SO(3)$$

 \blacktriangleright Foliation algebra $C^*(\mathfrak{F})$ in (ES6) is mapping cone $\mathfrak{C}_\rho.$

$SO(3) \subset \mathbb{R}^3$: calculation (IV)

So: To calculate $K_0(C^*(\mathfrak{F}))$, find kernel of

$$\rho: C^*(SO(3)) \to \mathcal{K}(L^2(S^2)).$$

- $\begin{array}{l} \bullet \mbox{ Peter-Weyl: } C^*(SO(3)) = \oplus_{m \in \mathbb{N}} M_{2m+1}(\mathbb{C}) \mbox{ and } \\ K_0(C^*(SO(3))) = \mathbb{Z}^{(\mathbb{N})} \mbox{ (and } K_1(C^*(SO(3))) = \{0\}). \end{array}$
- ▶ In order to compute the map $\rho_* : K_0(C^*(SO(3))) \to \mathbb{Z}$, we have to understand how many times the repn $\sigma_m (\dim(\sigma_m) = 2m + 1)$ appears in ρ , *i.e.* count dimension of $\operatorname{Hom}_{SO(3)}(\sigma_m, \rho)$.
- Since $S^2 = SO(3)/S^1$, $\rho = Ind_{S^1}^{SO(3)}(\epsilon)$ where ϵ trivial repn of S^1 .
- Frobenius reciprocity thm: dim(Hom_{SO(3)}(σ_m, ρ)) = dim(Hom_{S¹}(σ_m, ε)) = 1.
- So $\rho_*: K_0(C^*(SO(3))) \to \mathbb{Z}$ maps each generator $[\sigma_m]$ of $K_0(C^*(SO(3)))$ to 1.

 $K_0(C^*(\mathfrak{F})) = \ker \rho_* \simeq \mathbb{Z}^{(\mathbb{N})} \qquad K_1(C^*(\mathfrak{F})) = 0$