

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

Εβδομαδιαίο Σεμινά οιο

Το αντίστοοφο πρόβλημα των ροπών και εφαρμογές στην τομογοαφία και στην ανίχνευση αποκλινουσών τιμών

Νικόλαος Στυλιανόπουλος

Τμήμα Μαθηματικών και Στατιστικής, Πανεπιστήμιο Κύπρου

Ακολουθεί η περίληψη στην επόμενη σελίδα.

Τετάρτη 8 Ιανουαρίου 2020, 18:00

Αίθουσα 201α Τμήματος Μαθηματικών

The inverse problem of moments with applications to geometric tomography and the detection of outliers

by

NIKOS STYLIANOPOULOS University of Cyprus nikos@ucy.ac.cy

Let μ be a finite Borel measure having compact and infinite support S in the complex plane \mathbb{C} , and consider the Lebesgue space $L^2(\mu)$, with inner product

$$\langle f, g \rangle_{\mu} := \int f(z) \overline{g(z)} d\mu(z).$$

Let $\{p_n(\mu, z)\}_{n=0}^{\infty}$ denote the sequence of orthonormal polynomials associated with μ ; that is, the unique sequence of the form

$$p_n(\mu, z) = \gamma_n(\mu) z^n + \cdots, \quad \gamma_n(\mu) > 0, \quad n = 0, 1, 2, \dots,$$

satisfying $\langle p_m(\mu,\cdot), p_n(\mu,\cdot) \rangle_{\mu} = \delta_{m,n}$.

The sequence $\{\lambda_n(\mu,z)\}_{n=0}^{\infty}$ of the *Christoffel functions* is defined by

$$\frac{1}{\lambda_n(\mu, z)} = \sum_{k=0}^n |p_k(\mu, z)|^2, \quad z \in \mathbb{C}.$$

The purpose of the talk is to describe an reconstruction algorithm, based on the asymptotics of the Christoffel functions, for computing approximations to the support S of μ . The input of the algorithm is a finite set of the complex moments

$$\int z^m \overline{z}^n d\mu(z), \quad m.n = 0, 1, \dots,$$

of the measure μ . This leads to applications in geometric tomography and the detection of outliers and anomalies in statistical data.